본문 바로가기

반응형

수소운송

가스망 H₂ 블렌딩의 재료공학과 규제 이슈 : 수소취성, 실·검지, 보일러 개조 비용을 어떻게 최소화할 것인가 천연가스망에 수소를 체적비로 일정 비율 혼입(blending) 하는 전략은, 별도의 전용 수소관로를 즉시 구축하지 않고도 빠르게 저탄소화를 진전시킬 수 있는 과도기 해법이다. 그러나 수소의 재료학적 특성(확산성·취성 유발), 연소물성(높은 화염전파 속도, 넓은 가연범위), 계량·요금 체계, 가전·산업용 기기의 호환성까지 고려하면 공학·규제 설계가 결코 단순하지 않다. 본 글은 ① 재료공학(배관·밸브·실링), ② 가스 품질·계량·안전(검지·환기·방폭), ③ 최종수요(특히 가정용 보일러), ④ 규제·시장설계 관점에서 핵심 쟁점을 정리하고, 비용을 최소화하는 단계적 로드맵을 제시한다.1. 재료공학적 이슈: 수소취성과 누설1) 강관(탄소강 라인파이프)라인파이프 강재(X42~X70 등)는 장기간 고압 수소 노출 .. 더보기
암모니아의 재발견: 수소 캐리어이자 연료로서의 가능성과 한계 암모니아(NH₃)는 수소 캐리어이자 자체 연료로서 주목받고 있다. -33 °C에서 대기압으로 액화되고(또는 상온 약 8–10 bar에서 액상 유지) 기존 비료 산업이 이미 조선·저장·하역 인프라를 보유한다는 점이 최대 강점이다. 반면 독성·부식성·NOx 배출과 크래킹(분해) 에너지 패널티가 본질적 한계로 작동한다. 본 글은 생산·물류·크래킹·연소/연료전지·안전·LCA/경제성·정책 설계까지 프로젝트 의사결정에 필요한 실무 프레임을 제시한다. 1. 왜 암모니아인가: 수소 캐리어로서의 논리높은 체적 에너지밀도: 액화수소(LH₂) 대비 에너지밀도는 낮지만, 상온·중저압 액상(저비용 탱크·배관 활용)이라는 점이 해상 장거리 물류에서 결정적이다.성숙한 글로벌 인프라: 대형 탱크팜, 암모니아 탱커선, 로딩암, 철도.. 더보기
수소 저장·운송의 물리학: 고압·액화·LOHC·금속수소화물의 에너지 패널티와 안전성 수소는 질량 에너지밀도는 높지만(저위발열량 약 33 kWh/kg), 체적 에너지밀도는 매우 낮다. 이 불균형이 저장·운송의 핵심 난제이며, 해법마다 ‘에너지 패널티·안전·비용’의 트레이드오프가 존재한다.공통 성능지표라운드트립 효율: 압축/액화/수화·탈수화/수소화·탈수소화 과정의 총손실.안전성: 누설·점화·폭발한계(수소의 가연범위는 넓고 점화에너지가 낮다), 통풍·검지·방폭 설계.물류비/설비비: CAPEX(탱크·펌프·열교환기·촉매), OPEX(전력·열·촉매 교체·손실).1) 고압기체 저장·운송(350/700 bar)물리: 압력 상승에 따라 체적밀도는 증가하나, 압축에너지와 저장용기 요구사항(복합재, 누설 관리)도 증가한다.밀도 감각: 350 bar에서 대략 20대 kg/m³, 700 bar에서 40 kg/.. 더보기

반응형